拉船中几个力学问题

钱树高

(昆明理工大学理学院 云南 昆明 650051)

夏英齐

(云南师范大学物理与电子信息学院 云南 昆明 650500) (收稿日期:2017-09-13)

摘 要:说明了拉绳速度不同于河水速度,用不同的方法给出了拉圆周(球面)上船(车)的加速度,指出岸上拉船可以统一到二绳拉船中.

关键词:拉船速度与河水速度 船的速度和加速度 圆周(球面)上船(车)的加速度

在贵刊上一些不同看法的文章^[1~3] 最初引起我们的注意.我们肯定了文献[3]的正确性,并指出速度合成与分解的基础(依据)在于:运动的合成与分解.又,拉船过程中,绳上点做曲线运动,这也是基于运动的合成与分解,它沿绳运动,又绕定滑轮转动.我们还对文献[1]认为也是不能用速度合成与分解的几个例子,提出了我们的分析与看法^[4].不同的看法、解法、有疑点、有争论,可以明辨是非,对促进学术繁荣是十分有益的.

1 岸上用绳拉湖中船

一人站在岸上以速度 v 拉绳(或收绳),或者拉伸跨定滑轮的绳以速度 v 奔跑,使湖中船靠岸(图 1).求船速 V 和加速度 a.

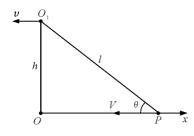
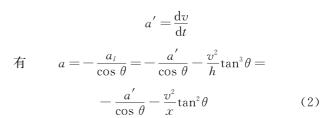


图 1 岸上人拉船示意图

用多种方法可求得到

$$V = \frac{v}{\cos \theta} \tag{1}$$

若拉绳的加速度为



类似的,拉斜坡上的车(图 2),有同样的关系;

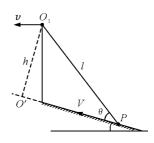


图 2 斜坡拉车情形

拉球面上的车(图 3) 也有

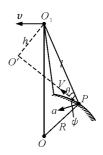


图 3 球面拉车情形

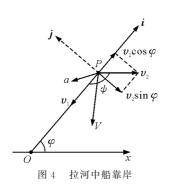
$$V = \frac{v}{\cos \theta} = \frac{v}{\sin \psi}$$

还可求得

$$a = \frac{v^2}{R \sin^2 \psi} \sqrt{1 + \frac{(l - R\cos \psi)^2 \cos^2 \psi}{l^2 \sin^2 \psi}}$$
 (3)

2 岸边用绳拉河中船

岸边一人用绳拉河中船靠岸,拉绳速度为 v_1 ,水流速度为 v_2 (绳与船在同一水平面上),求船速和加速度(图 4).



船的径向速度

$$\frac{\mathrm{d}l}{\mathrm{d}t} = -v_1$$

船的横向速度

$$l\frac{\mathrm{d}\varphi}{\mathrm{d}t} = -v_2\sin\varphi$$

径向加速度

$$\alpha_{l} = \frac{\mathrm{d}^{2} l}{\mathrm{d}t^{2}} + l \left(\frac{\mathrm{d}\varphi}{\mathrm{d}t}\right)^{2} = -\frac{v_{2}^{2} \sin^{2}\varphi}{l} \tag{4}$$

横向加速度

$$\alpha_{\varphi} = l \left(\frac{\mathrm{d}^{2} \varphi}{\mathrm{d}t^{2}} \right) + 2 \frac{\mathrm{d}l}{\mathrm{d}t} \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \frac{v_{2} \sin \varphi (v_{1} + v_{2} \cos \varphi)}{l}$$

$$(5)$$

3 岸边用二绳拉湖中船

岸边二人分别用二绳拉湖中船靠岸,拉绳速度为 v_1 和 v_2 ,相应的绳长为 l_1 和 l_2 ,二绳夹角为 ϕ (二绳与船在同一水平面上),求船速度和加速度(图 5).

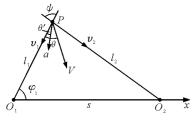


图 5 二人分别用二绳拉船

3.1 船的速度和加速度

用做功的观点,可以得到[5]

$$V = \frac{v_1}{\cos \theta}$$

$$\frac{\cos(\psi - \theta)}{\cos \theta} = \frac{v_2}{v_1} \tag{6}$$

由式(6),得

$$\tan \theta = \frac{v_2 - v_1 \cos \psi}{v_1 \sin \psi} \tag{7}$$

于是

$$V = \frac{v_1}{\cos \theta} = v_1 \sqrt{1 + \tan^2 \theta} = \frac{\sqrt{v_1^2 + v_2^2 - 2v_1 v_2 \cos \psi}}{\sin \psi}$$
(8)

用运动合成与分解的方法,也可求解:从 O_1 (或 O_2)来看,船的运动可以视为沿绳方向的运动(v_1 或 v_2),和绕 O_1 (或 O_2)的转动,因此有

$$V = \frac{v_1}{\cos \theta}$$

及

$$V = \frac{v_2}{\cos(\phi - \theta)}$$

和上面做功法的结果相同.

对船的加速度也可类似的求解,有

$$a = \frac{a_{l_1}}{\cos \theta'} = \frac{a_{l_2}}{\cos(\phi - \theta')}$$

其中沿绳的径向加速度

$$a_{l_1} = a_1 + l_1 \omega_1^2 = a_1 + \frac{v_1^2 \tan^2 \theta}{l_1}$$
 (9)

$$a_{l_2} = a_2 + l_2 \omega_2^2 = a_2 + \frac{v_2^2 \tan^2(\psi - \theta)}{l_2}$$
 (10)

由此即可定出 a 和 θ' .

若匀速拉绳 $a_1 = 0, a_2 = 0$,此时可求得 $\tan \theta' =$

$$\frac{l_1 (v_1 - v_2 \cos \phi)^2 - l_2 (v_2 - v_1 \cos \phi)^2 \cos \phi}{l_2 (v_2 - v_1 \cos \phi)^2 \sin \phi}$$
(11)

及

$$a = a_{l_1} \sqrt{1 + \tan^2 \theta'} \tag{12}$$

可以证明,在二绳拉船中,船绕 O_1 转动的角速度 ω 和角加速度 β 为

$$\frac{d\varphi_{1}}{dt} = -\frac{v_{2}l_{2} - v_{1}l_{1} + sv_{1}\cos\varphi_{1}}{sl_{1}\sin\varphi_{1}} =
-\frac{v_{2} - v_{1}\cos\psi}{l_{1}\sin\psi} = -\omega$$

$$\frac{d^{2}\varphi_{1}}{dt^{2}} = -\frac{1}{s^{2}l_{1}^{2}\sin^{3}\varphi_{1}} [2sl_{2}v_{1}v_{2} - sl_{1}v_{1}^{2} - sl_{1}(v_{1}^{2}\cos^{2}\varphi_{1} + v_{2}^{2}\sin^{2}\varphi_{1}) +
(1 + \sin^{2}\varphi_{1})s^{2}v_{1}^{2}\cos\varphi_{1}
+ (l_{1}v_{1} - l_{2}v_{2})^{2}\cos\varphi_{1}] =$$
(13)

$$-rac{1}{l_{1}^{2}l_{2}\,\sin^{3}\!\psi}\{l_{2}v_{1}v_{2}\sin^{2}\!\psi-l_{2}v_{1}^{2}\sin^{2}\!\psi\!\cos\,\psi-$$

 $(v_2\cos\psi - v_1)[l_1v_1 + l_2v_2 - (l_1v_2 + l_2v_1)\cos\psi]$ =

$$-\frac{\mathrm{d}\omega}{\mathrm{d}t} = -\beta \tag{14}$$

由此,用式(4)和(5),可得 a_{l_1} 和 a_{φ_1} 以及 $\tan \theta' =$

 $\frac{\alpha_{\varphi_1}}{\alpha_{l_1}}$,这些结果和式(11)、(12) 是一致的.

例如 $,l_1=l_2(=l),v_1=v_2(=v)$,即对称拉船,可求得

$$\theta = \theta' = \frac{\psi}{2}$$

$$V = \frac{v}{\cos \theta} = \frac{v}{\cos \frac{\psi}{2}}$$

$$\alpha = \alpha_{l_1} \sqrt{1 + \tan^2 \theta'} = \frac{v^2 \tan^2 \frac{\psi}{2}}{l} \sqrt{1 + \tan^2 \frac{\psi}{2}}$$

与高h的湖岸上拉船一样,这是很显然的.

另一方面,由式(13)、(14)、(4) 及(5),也可求 得上述结果.

又如

$$l_2 \rightarrow \infty \qquad \psi = \frac{\pi}{2}$$

用二法都可求得

$$\alpha = \alpha_l = \frac{v_2^2}{l}$$

在图 5 中,当绳长 $l_2 \rightarrow \infty$ 时,绳将无转动, $\omega_2 = 0$,看来 v_2 就变得如同河水速度了,大小和方向都不改变,因而二绳拉船就转化为一绳拉河船的问题了,但是事实并不是这样,由式(4)、(5)及(13)、(14),

可得:甚至在 $\phi = \frac{\pi}{2}$ 的情况下,二绳拉船的角加速度

$$\beta = \frac{2v_1v_2}{I^2}$$

湖船的加速度

$$\alpha = \alpha_l = \frac{v_2^2}{l}$$

而河船的

$$\beta = \frac{v_1 \, v_2}{l^2}$$

$$\alpha = \sqrt{\alpha_l^2 + \alpha_\varphi^2} = \left(\frac{v_2}{l}\right)\sqrt{v_2^2 + v_1^2}$$

二者并不相同,应该注意,拉绳或收绳速度不同于河水的作用速度.

3.2 与岸上拉绳之联系

设船约束在圆周上运动 $(l_1 = R, v_1 = 0)$,如图 6 所示,这里 $\phi = \angle O_1 PO_2$.

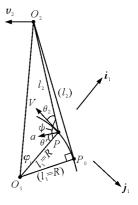


图 6 船被约束在圆周上

有

$$V = \frac{v_1}{\cos \theta} = \frac{v_2}{\cos (\psi - \theta)}$$

可见

$$\theta = \frac{\pi}{2} \qquad V = \frac{v_2}{\sin \phi}$$

又

$$a_{l_1} = l_1 \omega_1^2 = \frac{1}{l_1} \left(\frac{v_2 - v_1 \cos \psi}{\sin \psi} \right)^2 = \frac{v_2^2}{l_1 \sin^2 \psi}$$

$$a_{l_2} = l_2 \omega_2^2 = \frac{1}{l_2} \left(\frac{v_1 - v_2 \cos \psi}{\sin \psi} \right)^2 = \frac{v_2^2 \cos^2 \psi}{l_2 \sin^2 \psi}$$

н

$$a = \frac{a_{l_1}}{\cos \theta'} = \frac{a_{l_2}}{\cos (\psi - \theta')}$$

可得

$$\tan \theta' = \frac{l_1 \cos \psi - l_2}{l_2 \sin \psi} \cos \psi \tag{15}$$

及

$$a = \frac{a_{l_1}}{\cos \theta'} = \frac{v_2^2}{l_1 \sin^2 \theta} \sqrt{1 + \frac{(l_2 - l_1 \cos \psi)^2 \cos^2 \psi}{l_2^2 \sin^2 \theta}}$$
(16)

还可从另一观点来看,船做圆周运动的向心加速度和切向加速度为

$$a_{\rm n} = \frac{V^2}{R} = \frac{v_2^2}{R \sin^2 \psi}$$

$$a_{\rm t} = R \frac{\mathrm{d}^2 \varphi_1}{\mathrm{d}t^2} \tag{17}$$

其中角加速度可由式(14) 令 $v_1 = 0$ 而得

$$\frac{\mathrm{d}^{2} \varphi_{1}}{\mathrm{d}t^{2}} = \frac{v_{2}^{2} (sl_{1} \sin^{2} \varphi_{1} - l_{2}^{2} \cos \varphi_{1})}{s^{2} l_{1}^{2} \sin^{3} \varphi_{1}} = \frac{v_{2}^{2} \cos \psi (l_{2} - R \cos \psi)}{R^{2} l_{2} \sin^{3} \psi} \tag{18}$$

故

$$a = \sqrt{a_{n}^{2} + a_{t}^{2}} = \frac{v_{2}^{2}}{R \sin^{2} \psi} \bullet$$

$$\sqrt{1 + \frac{(l_{2} - R\cos \psi)^{2} \cos^{2} \psi}{l_{2}^{2} \sin^{2} \psi}}$$
 (19)

如果令 $R \to \infty$ (图 6),则球面上圆周变成平面

(斜坡或湖面)上一条直线,求得的结果和式(2)是完全一致的.这样,岸上拉船的问题就作为一种特殊情况和二绳拉船完全统一起来了.

可以指出,有些文献说是在"河岸"上"拉河中小船"可能是笔误疏忽^[6,7],也许不是,因此我们还是来照题分析思考一下在河中船的运动,"船向岸靠拢的速度",向原点 O 或岸边靠近的速率是否仍然与湖中小船靠岸的速率相同,读者可自行讨论.

参考文献

- 1 王一鹏,刘大鹏.谈谈速度的合成与分解 —— 拉小船近岸问题的分析.物理通报,1993(12):10
- 2 谢毓章. 从"一道易错的物理习题"谈起. 物理通报, 1990(8):7
- 3 肖泰征. 物理实验在高三复习中的应用. 物理通报, 1993(7):14
- 4 钱树高,夏英齐. 用绳拉船和速度的合成与分解. 物理与工程. 2009,19(2):55
- 5 钱树高,夏英齐. 船的加速度和速度佯谬. 工科物理, 1999,9(2):14
- 6 赵凯华,罗蔚茵. 新概念物理教程·力学. 北京:高等教育出版社,1995.38
- 7 邱荒逸.对"拉船靠岸"习题的教学思考.物理与工程, 2007,17(3);27

Several Mechanical Problems in Drawing Boat

Qing Shugao

(Kunming University of Science and Technology, College of Science, Kunming, Yunnan 650051)

Xia Yingqi

(Yunnan Normal University, College of Physics and Electronic Information, Kunming, Yunnan 650031)

Abstract: This article clarifies that the speed of drawing rope is different from velocity of river water. Drawing boat (or car) with rope, the accelerations of boat moving along a circular path(circumference) and car on the spherical surface are given by different methods. The paper points out : the problem of a boat in the lake which is drawn on the high shore with one rope can unify into one with two ropes, as a particular case.

Key words: speed of drawing boat and velocity of river water; velocity and acceleration of boat; accelerations of boat on a circular path (circumference) and car on the spherical surface