基于“以学生为中心”的计算物理教学改革探索

房毅
(华东理工大学理学院 上海 200237)
张先梅
(华东理工大学教务处 上海 200237)
钟菊芸　虞立敏
(华东理工大学理学院 上海 200237)
(收稿日期：2017-03-06)

摘　要：“以学生为中心”的教育理念逐渐成为全世界越来越多教育工作者的共识。通过计算物理课程教学实践过程，基于以“学生为中心”的教育理念，从教学内容、教学方法、培养体系3个方面进行探索，探讨有效调动学生学习积极性，激发学生主观能动性的具体方法，为提高本课程教学质量提供了参考和借鉴。

关键词：以学生为中心　计算物理　教学改革

1　引言

“以学生为中心”是美国教育学家卡尔·罗杰斯于20世纪50年代提出的一种教育理念，是人类对教育心理学的原理的反映，体现了教育学的内在规律，对于当今日逐，特别是高师的教育改革实践具有一定的指导意义[1]。以学生为中心的教育模式，其主旨在于打破以教师为中心的传统教学方式，取而代之的是学生主导，自主参与、分工合作的全新教学模式。“以学生为中心”是建构主义学习理论的重要观点，学生由外部刺激的被动接受者和知识的灌输对象转变为信息加工的主体、知识意义的主动构建者，教师由知识的传授者、灌输者转变为学生主动建构意义的帮助者、促进者[2]。

近年来，“以学生为中心”的教育模式在我国教育界的热门话题并引起广泛关注与讨论。该理念促使教师以及管理者教育思想的转变、教学方法的改革、教学质量评估和政策制度的调整。

计算物理学是随着计算机技术的飞跃进步而不断发展的一门学科，在借助各种数值计算方法的基础上，结合了实验物理和理论物理学的成果。开拓了人类认识自然界的新方法[3]。1981年3月，以哈佛大学W. H. Press为首的11名著名学者、向美国国家科学基金会、物理咨询委员会等正式提交了发展计算物理学的计划，标志着与传统的实验物理学和理论物理学都相不同的计算物理学这门新兴边缘学科作为物理学的第三分支已步入了成熟发展时期。计算物理学是利用计算机进行数值计算、数值仿真来实现物理现象和研究物理规律的新兴学科。计算物理学在自然科学研究中发挥了巨大作用。实验物理学、理论物理学和计算物理学已经成为物理学研究的3种方法。

迄今为止，越来越多的大学将科学计算能力的培养作为素质教育的重要内容。很多大学针对要从事物理科学及相关学科研究的研究生和本科生开设了计算物理课程。如国外的哈佛大学、斯坦福大学、加州大学洛杉矶分校以及普林斯顿大学等。在我国，“计算物理学”是教育部物理学与天文学教学指导委员会确认的应用物理学专业本科生必修基础课，学生在中学时代，物理科学学习更多是理论与实验角度，计算的方法接触甚少。如何把计算的理念渗透到学生思维中，提高计算物理的学习效果，需要在计
算物理教学上探索行之有效的方法. 如果能够借鉴“以生为中心”教育理念的先进因素, 促进教学观念转变, 一定会促使教学与改革的实践提升到崭新的水平, 取得显著成效.

在计算物理教学过程中, 有些教师从教学内容的选取、资料的选择、时间的分配、模式的设置等方面优化计算物理课程设计, 促进教学效果。有些教师则提出在计算物理教学过程中要渗透交叉学科知识, 一方面可以促进教师追踪学科前沿知识的动态发展, 不断提升自己的知识结构和科研能力, 形成多元的知识结构, 另一方面, 通过在计算物理教学中渗透交叉学科知识, 可以激励学生对未知世界保持好奇, 对科学前沿保持一种热情探索的态度, 还有教师则重点关注如何将 Matlab 与课程内容的融合。

我们在计算物理教学过程中, 探索以学生为中心的教学理念, 设计课堂教学内容, 采用科学的教学方法和教学设计来激发学生学习的主动性与积极性, 从而提高学生在计算物理学习中的主体地位, 得到最佳的学习效果。

2 教学改革探索

2.1 以学生为中心的教学内容的遴选

教学内容的选取突出教学重点, 计算物理课程教学内容广泛, 如包括数值计算、计算机模拟、实验数据处理、计算机编程语言等多方面的知识。在有限的时间内不可能涵盖面面俱到, 适当地取舍教学内容是保证教学效果的前提和基础。例如在数据处理方面, 我们重点讲解了插值与拟合, 以及快速傅里叶变换, 拉格朗日插值多项式在计算物理中并没有详细介绍, 该余项在数值计算与分析课程中进行了详细推导, 在计算物理中直接使用, 引导学生课后自行查阅数值计算与分析的教材。Matlab 具有用法简单、灵活、结构性强、延展性好等特点, 成为科技计算、视图交互系统和程序中的首选语言工具。教学内容补充了该编程语言, 但考虑该语言简单, 课堂授课内容并没有详细介绍该软件的函数、工具箱等, 而是重点介绍了如何使用 Matlab 的 help 功能, 一旦学会使用 help, 就很容易掌握该软件并进行编程。这样从根本上做到了授学生以渔, 而不是授之于鱼。

虽然很多数值计算在 Matlab 非常容易实现, 一个函数、几行小程序就能解决, 但是在教学内容中, 我们对一些算法还是进行了详细阐述, 如数值积分与数值微分等, 让学生领会算法的思想, 学会运用这些方法来改进与创新, 得到一些新的算法。

学生在学计算物理前学过线性代数, 对线性代数课程中矩阵与行列式相关运算计算如求逆矩阵、转置矩阵、矩阵的加减乘除等, 还记忆犹新, 在介绍 Matlab 时, 重点列举介绍了线性代数中的相关运算用 Matlab 如何实现, 让学生直接体验 Matlab 的神奇功能, 激发他们对 Matlab 自主学习的积极性。

我校部分教师的研究方向与计算物理息息相关, 包括计算原子分子物理、等离子体数值计算与模拟、汽车光学设计、材料物理中的计算等等。我们把部分科研成果转化成教学内容, 让学生近距离接触当今最新研究成果、研究方法。例如, 在介绍 Monte-Carlo 模拟方法时, 我们会结合磁约束聚变等离子体研究中采用 Monte-Carlo 方法模拟中性粒子在等离子体中输运过程, 中性粒子的输运过程包括电子碰撞电离、离子碰撞电离以及电荷符合交换等复杂过程, 通过该具体实例向学生介绍整个过程的模拟方法, 粒子运动的随机跟踪、最后给出误差分析。这样, 在教学过程中, 同时也能使学生体验到科学研究的前沿工作。

2.2 以学生为中心的课堂教学方法

我们在本课程课堂授课过程中, 注重师生互动、注重启发式教学、注重案例式教学、注重小组讨论、注重探究性自学, 充分体现以学生为中心的教育理念。

课堂上, 以物理问题或者工程实践案例问题为导入, 启发学生思考相关问题如何解决, 然后再讲解计算物理解决问题方法。例如采用数值方法求解线性代数方程组的教学内容。并没有把抽象的线性代数中 n 维方程组直接给出, 而是给出一个实例, 例如桥梁建设工程中某几个点的受力情况, 启发学生分析问题, 然后列出方程组, 针对列出的线性方程组, 学生要考虑如何采用数值方法求解。

课堂教学过程中, 我们还特别注重学生分组讨论, 充分发挥学生的主观能动性。例如在介绍 Matlab 语言相关内容时, 希望学生将其与学过的 C 语言编程进行比较, 将学生分组, 对同样方程用两种语言编写程序, 再作对比, 这样很容易让学生掌握两种语言的差异。

计算物理在讲解算法时, 更像是数学课程, 如何让学生觉得容易理解和掌握, 需要在课堂上将抽象
的概念具体化，如微分方程的求解问题，四阶龙霍库塔法等的理解，做到理论紧密联系实际，触类旁通，促进学生积极思考问题，培养学生自学能力和独立思考能力，真正实现任课教师和学生的角色转变。

2.3 以学生为中心的计算物理培养体系

根据人类的认知理论，接受新知识的过程以及运用知识的能力形成过程，以学生为中心的培养体系既要充分发挥学生的主动性，能体现学生的首创精神，让学生有多种机会在不同的场景下去应用他们所学的知识（知识的“外化”），还要让学生能对形成客观事物的认识和解决实际问题的能力。计算物理学虽然在应用物理学专业的大三学期开设，但是实际计算物理的教学我们从大一开始，贯穿整个大学 4 年。

应用物理学专业学生大一学期开设了应用物理导论课，利用该课堂，开展系列讲座，介绍计算物理方法的重要性，计算物理的前沿发展，拓展学生的视野，让学生产生兴趣，并认识到计算物理在以后学习和工作的重要。同时告诉学生 Matlab 科学计算软件的重要性，且简单易学，在国外大学中常用，希望学生像使用文字处理软件 Word 一样，人人会用，去用。

在大一、大二专业课程学习过程中，如力学、热学、数学物理方法、电动力学等课程授课过程中，涉及到具体物理问题求解时，教师都会提及以后学会计算物理，可以用数值的方法解决物理学中解析法无法解决的问题。如热学课程在讲解热传导时，引入热传导方程，并告知学生数值方法将解决繁琐的偏微分方程的求解，再如普通物理实验中，实验数据处理，如何进行最小二乘法拟合，它的基本思想和原理都将在计算物理中讲解。大二下学期时，设计一些研究性课题，作为大学生创新实验计划，让学生开始调研，开展研究性学习，大三将开设计算物理课程，同时结合大学生创新实验计划，让部分学生学习循环渐进，循环渐进的培养模式使学生的学习成效较为明显。例如几大三学生曾通过市场调研开展自动汽车防护罩的设计创新活动，他们利用计算物理所学知识，确定了充气式自动汽车防护罩的设计方案，论证了动力学原理设计充气骨架结构的科学性，并估算出选用的太阳能电池板的大小与充气时间的关系，从而设计充气控制系统。该汽车防护罩的遥控开关电路连接在太阳能电池与气泵电源线之间，可