

2017 年高考北京物理实验题的 解法研究及对教学的启示

李宁

(北京市第九中学 北京 100041)

梁吉峰

(北京市育英学校 北京 100036)

丁庆红

(北京教育学院石景山分院 北京 100043)

(收稿日期:2017-11-04)

摘 要:2017年高考北京理科综合中的物理实验题考查的是力学中的"探究动能定理",从器材选取、实验细节、数据处理等角度进行了命题,很好地考查了学生的实验能力和探究能力.对该实验题的解法进行了研究,探讨了高考实验命题对中学物理教学的一些启示.

关键词:探究动能定理 实验 启示

1 引言

2017年高考北京理科综合中的物理实验题是高考试题中的一大亮点,与近几年的北京高考物理实验题一样,注重考查常规实验,命题的角度非常贴近高中教学实际情况,能很好地反映学生的实验能力,同时注重考查学生在常规实验基础上的深入思

考能力,挖掘、深层次考查学生的探究能力,充分展现北京高考试题注重考查物理核心素养、具有创新性和选拔性考试的特点.本文对2017年高考北京理科综合中的物理实验题的解法进行了研究,反观实验教学现状,探讨了高考实验命题对教学的一些启示,对于高三复习备考以及物理实验教学具有一定的参考价值,希望起到抛砖引玉的作用.

2.2 结果分析

通过上述云图,学生可以清楚地观察到波的干涉产生条件和特点.当两个波振动频率相等时才能产生"美的、对称的"干涉现象.同时可知,振动频率越大,相同路程上的波数越多,说明波长越短.当两个波振动频率不同时,产生的波形云图是混乱的,无规律的.

3 结论

本文通过 Ansys 软件,对中学物理中波的衍射和干涉问题进行了模拟.模拟过程符合实际情况,得到现象生动清晰.极大地激发了学生的学习热情,从小培养了其科学探究精神,对于学生的学科素养有

很大提升.通过数值模拟,将原本难以实际操作的抽象实验直观地展示出来,增加了课堂的深度和广度,作为一种新的中学物理教学手段,具有很高的研究价值.

参考文献

- 1 邵泽义,秦晓文. MATLAB 在中学物理教学中的基本应用. 教学仪器与实验,2002,18(2):11 ~ 12
- 2 孟宪松, 陈景太. MATLAB 软件在中学物理中应用举例, 中学物理, 2012(6):40 ~ 41
- 3 李黎明. Ansys 有限元分析实用教程. 北京:清华大学出版社.2005
- 4 沈壮志. Ansys 软件在驻波振动教学中的应用. 物理通报,2015(5):20~22

考题重现

【题目】(2017年高考北京理综卷实验题第21 题)如图1所示,用质量为m的重物通过滑轮牵引小 车,使它在长木板上运动,打点计时器在纸带上记录 小车的运动情况. 利用该装置可以完成"探究动能定 理"的实验.

(1) 打点计时器使用的电源是 (选填选 项前的字母).

A. 直流电源

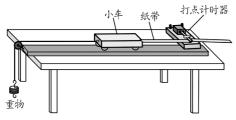
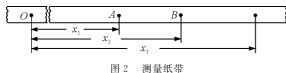
B. 交流电源

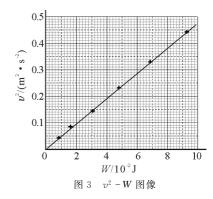
(2) 实验中,需要平衡摩擦力和其他阻力,正确 的操作方法是 (选填选项前的字母).

A. 把长木板右端垫高 B. 改变小车的质量 在不挂重物且 (选填选项前的字母)的 情况下,轻推一下小车. 若小车拖着纸带做匀速运 动,表明已经消除了摩擦力和其他阻力的影响.

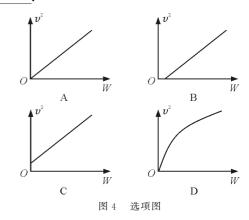
A. 计时器不打点

B. 计时器打点


图 1 试题情境图

(3)接通电源,释放小车,打点计时器在纸带上 打下一系列点,将打下的第一个点标为 O. 在纸带上 依次取 A,B,C,\cdots 若干个计数点,已知相邻计数点 间的时间间隔为 T. 测得 A,B,C,\cdots 各点到 O 点的 距离为 x_1, x_2, x_3, \dots ,如图 2 所示.



实验中,重物质量远小于小车质量,可认为小车 所受的拉力大小为 mg. 从打 O 点到打 B 点的过程 中,拉力对小车做的功 W = ,打 B 点时小车 的速度 v = .

(4)以 v² 为纵坐标,W 为横坐标,利用实验数据 做出如图 3 所示的 v^2 - W 图像. 由此图像可得 v^2 随 W 变化的表达式为 . 根据功与能的关系,动 能的表达式中可能包含 v^2 这个因子;分析实验结果 的单位关系,与图线斜率有关的物理量应是

(5) 假设已经完全消除了摩擦力和其他阻力的 影响,若重物质量不满足远小干小车质量的条件,则 从理论上分析,图 4 选项中正确反映 $v^2 - W$ 关系的

考题分析

2017 年高考北京理综卷实验题第 21 题考查的 是常规学生实验"探究动能定理",每道小题的考查 细目如表 1 所示.

实验每道小题的考查目标

题目编号	考查细目
(1)	器材选取:选择打点计时器使用的电源
(2)①	实验细节:平衡摩擦力和其他阻力的方法
(2)②	实验细节:如何算平衡好了摩擦力和其他阻力
(3)①	数据处理:计算拉力对小车做的功 W
(3)②	数据处理:分析纸带求速度
(4)①	数据处理:根据图像写表达式
(4)2	数据处理:分析图像斜率的物理意义
(5)	数据处理:改变实验条件深入分析

4 解法研究

- (1)考查打点计时器的配套电源选取,根据打点计时器的工作原理或学生真正使用打点计时器做过实验,不难确定正确选项为B.
- (2)1)考查平衡摩擦力和其他阻力的具体实验细节,如果理解平衡摩擦力和其他阻力的原理或真实做过这个实验,可以确定正确选项为 A.
- 2) 考查如何才算平衡好了摩擦力和其他阻力 的具体实验细节,如果理解为何要平衡摩擦力和其 他阻力或真实经历过实验过程,可以确定正确选项 为 B.

对平衡摩擦力和其他阻力的认识:根据实验目 的,探究"动能定理",即探究合外力对小车做的功与 小车动能增量的关系,需要确定合外力做的功与小 车的动能增量,小车的动能增量可以通过纸带处理 数据求解速度,进一步根据动能表达式得出;合外力 做的功需要求出小车所受的合外力,根据功的计算 公式得出,实验中便于确定的是小车所受的拉力,如 果把拉力当作合外力的话,需要满足除拉力外,其他 外力的合力为零,称之为平衡摩擦力.具体平衡摩擦 力的方法是将长木板的一端垫高,相当于是让小车 处于斜面上,移动垫木的位置改变斜面倾角,直到小 车可以匀速运动,此时小车所受的合力为零,如果再 对小车施加拉力,则拉力即为小车所受的合外力,拉 力做功即为合外力做的功. 实验中的阻力来源有小 车与木板之间的滑动摩擦力、实验中纸带与打点计 时器之间的阻力、空气阻力等,故在平衡摩擦力时, 需要在不挂重物且打点计时器打点的情况下,轻推 一下小车. 若小车拖着纸带做匀速运动, 表明已经消 除了摩擦力和其他阻力的影响, 为了准确判断小车 是否匀速,还需要分析打出的纸带,如果点是均匀分 布,可以认为小车在做匀速运动,平衡了阻力,为进 一步实验做好了准备.

(3)考查数据处理计算拉力对小车做的功W和分析纸带求速度.如果学生掌握功的概念,理解分析纸带求速度的方法,真实处理过这种实验数据则不难作答.

1) 实验中,若重物质量远小于小车质量,可认为小车所受的拉力大小为 mg. 从打 O 点到打 B 点的过程中,位移大小为 x_2 ,拉力对小车做的功

$$W = mgx_2$$

2) 匀变速直线运动中,中间时刻的瞬时速度等 于这一段时间的平均速度,打 B 点时小车的速度

$$v = \frac{x_3 - x_1}{2T}.$$

(4)1)要求"由此图像可得 v^2 随W变化的表达式",根据图像近似为正比例函数,应用数学知识不难写出表达式

$$v^2 = kW$$
 $k = 4.5 \sim 5.0$

2) 要求"分析实验结果的单位关系,与图线斜率有关的物理量应是",分析斜率 k 的单位

$$\begin{bmatrix} k \end{bmatrix} = \begin{bmatrix} v^2 \\ \boxed{W} \end{bmatrix} = \frac{(1 \text{ m/s})^2}{(1 \text{ N} \cdot \text{m})} =$$

$$\frac{(1 \text{ m/s})^2}{(1 \text{ kg} \cdot \text{m/s}^2 \times 1 \text{ m})} = \frac{1}{1 \text{ kg}} = \frac{1}{\llbracket M \rrbracket}$$

所以与图像斜率有关的物理量应是质量.

(5) 要求"假设已经完全消除了摩擦力和其他阻力的影响,若重物质量不满足远小于小车质量的条件,则从理论上分析,图 4 中正确反映 $v^2 - W$ 关系的是",这个问题如何处理呢?

通过分析近几年的北京高考实验题不难发现,每年都有一问这种类型的题目,或论述,或选择,这 类问题有没有处理的一般方法呢?我们不妨通过对 这道实验题最后一问的分析来研究一下.具体步骤 如下.

第一步,当成一道综合问题来分析:创设重物牵引小车运动的物理情境.

第二步,构建运动模型:重物竖直向下匀加速直 线运动,小车沿斜面做匀加速直线运动,重物和小车 是加速度大小相等的连接体,如图 5 所示.

图 5 构建运动模型

第三步,选研究对象,受力分析,如图 6 所示.

图 6 对研究对象受力分析

第四步,选规律,写方程.

对小车:

$$F = Ma \tag{1}$$

对重物:

$$mg - F = ma \tag{2}$$

由此可得

$$a = \frac{mg}{M+m}$$
 $F = \frac{M}{M+m}mg$

若重物质量满足远小于小车质量的条件,即 $m \ll M$,从理论上分析,则可认为小车所受的拉力

$$F = mg \tag{3}$$

若满足动能定理,则有

$$Fx = \frac{1}{2}Mv^2 \tag{4}$$

即

$$W = \frac{1}{2}Mv^2 \tag{5}$$

整理可得

$$v^2 = \frac{2}{M}W\tag{6}$$

其中斜率 $k = \frac{2}{M}$ 为一常数,故 $v^2 - W$ 关系图像为过原点的一条直线.

若重物质量不满足远小于小车质量的条件,从 理论上分析,则小车所受的拉力为

$$F = \frac{M}{M+m} m g \tag{7}$$

若满足动能定理,则有

$$Fx = \frac{1}{2}Mv^2 \tag{8}$$

即

$$W = \frac{1}{2}Mv^2 \tag{9}$$

整理可得

$$v^2 = \frac{2}{M}W\tag{10}$$

其中斜率 $k = \frac{2}{M}$ 为一常数,故 $v^2 - W$ 关系图像仍为过原点的一条直线.

故正确答案为 A.

要正确解答这道题目还需要注意如下几点:

- a. 题目给定的 W 是指拉力对小车做的功,而非 重物重力做的功.
 - b. 要求从理论上分析,而非实验上分析.
- c. 重物质量满足或不满足远小于小车质量的条件,对小车所受拉力有影响,拉力不同,但是拉力均为恒力,在"设已经完全消除了摩擦力和其他阻力的影响"的前提下,拉力始终为小车所受的合外力,拉力的功为小车所受的合外力的功.

5 对中学物理教学的启示

(1) 高度重视常规学生实验,精编实验讲义,在 实验室动手解决问题,充分经历实验探究过程

在高三复习备考中,有人认为常规学生实验在高一和高二做过,高三没必要在这方面再浪费时间,再说即使是实验做得很熟练,考试也不一定能得到相应分数,不如高三讲实验来得实惠,这种做法尽管有一定道理,但是不符合新课改要注重培养物理核心素养、提高学生实验探究能力的要求.如何在高三教学中做好提高分数与提升能力的平衡,确实需要一线物理教师发挥教学智慧.为提高实验教学效率,建议根据学生情况编制实验学案,把考查常规实验的实验题改编成学生实验,让学生先预习,教师批阅,再让学生带着问题进实验室,经历真实实验过程,对于实验原理、器材选取、实验步骤、数据处理和误差分析等知识,根据学生掌握情况,再进行讲解,会得到更好的教学效果.

(2) 做好演示实验,规范学生实验操作

教师要精挑一些实验做好演示,规范学生的实验操作,例如使用多用电表测电阻,如何机械调零,根据待测电阻情况合理选挡,红黑表笔短接调零,测量并读数,如果还需要测量其他电阻,若不需要换挡

直接测量,如果需要换挡测量其他电阻需要重新短接调零.最后规范整理器材时多用电表的选择开关置于"OFF"挡或交流电压最高挡位,红黑表笔取出,长时间不用多用电表,需要将电池取出.教师规范演示完毕,不见得学生真的会了,再让学生注意规范操作的基础上真动手,在真动手的时候,才可能做到真动脑,干巴巴的知识才可能变得生动起来,爱动脑的孩子自然要思考内部的构造是怎样的?什么原理?学习过程不断引向深入,复习效率自然提高.

(3) 精选探究实验,将实验进行变式,鼓励学生探究

通过分析近几年的高考实验题最后一问,不难发现一些规律,即在常规实验的基础上,改变某些实验条件,对实验结果进行深入讨论,较高层次考查学生的实验探究能力. 例如 2017 年考查的探究动能定理实验最后一问中提出"假设已经完全消除了摩擦力和其他阻力的影响,若重物质量不满足远小于小车质量的条件,则从理论上分析,正确反映 v² - W关系的是",常规实验考查为"若重物质量满足远小于小车质量的条件,则从理论上分析,正确反映 v² - W关系的是",如果在教学中加以引导,启发学生思考为什么需要满足重物质量满足远小于小车质量的条件,不满足的话,对哪个物理量有直接影响?如何进行修正?对实验结果有何影响?等等,可能很多问题都迎刃而解.

(4)以典型实验为例渗透图像法处理数据思想 在高中物理实验中有很多应用图像法处理数据 的例子,对于图像我们需要重点关注图像的变化趋势、斜率、截距、面积等信息所包含的物理意义.

例如:2016 年高考北京实验题考查验证机械能守恒定律的实验,最后一问中提出,"在纸带上选取多个计数点,测量它们到起始点O的距离h,计算对应计数点的重物速度v,描绘 $v^2 - h$ 图像,并做如下判断:若图像是一条过原点的直线,则重物下落过程中机械能守恒.请你分析论证该同学的判断依据是否正确."该实验数据处理将计算验证转化为图像验证,作出 $v^2 - h$ 关系图像,若图像是一条过原点的直线,是不是就能说明能证实机械能守恒呢?需要

借助于基本关系论证一下.

具体论证过程可以把这样的问题看成一个综合题,物体竖直向下做匀加速直线运动,选择规律写方程. 如果满足机械能守恒,则 $mgh = \frac{1}{2}mv^2$,则 $v^2 = 2gh$,可知 $v^2 - h$ 图像是过原点的一条直线,且图像的斜率接近 2g.

如果物体下落过程有阻力且阻力恒定时,图像是什么样子呢?借助能量守恒定律不难写出: $mgh = \frac{1}{2}mv^2 + fh$,则 $v^2 = \frac{2(mg-f)}{m}h$,可知 $v^2 - h$ 图像也是过原点的一条直线.看来要想通过作出 $v^2 - h$ 图像的方法验证机械能是否守恒,还必须看图像的斜率是否接近 2g.

又如:伏安法测电源电动势和内电阻的实验中,通过采集数据作出了电源的路端电压与流过电源的电流的关系图像,即U-I关系图像,利用图像求出电源的电动势和内电阻.不妨写出U-I的函数关系表达式,因为支配函数图像背后的是函数关系,借助所学知识写出纵坐标与横坐标的函数关系,即U=-Ir+E,不难看出图像斜率的绝对值表示内电阻r,图像与纵轴的截距表示电源电动势E.

再如:物理规律具有简洁美,在利用图像法来处理数据时,直接研究某两个物理量关系可能是反比例函数,不妨将其中一个变量取倒数,再作图像就可以转化为一次函数关系,图像就变成简洁的线性关系了. 比较典型的是牛顿第二定律实验中,把描绘a-m 图像转化为描绘 $a-\frac{1}{m}$ 图像,等等.

参考文献

- 1 人民教育出版社,课程教材研究所,物理课程教材研究 开发中心.普通高中课程标准实验教科书必修 1. 北京: 人民教育出版社,2010,72
- 2 人民教育出版社,课程教材研究所,物理课程教材研究 开发中心.普通高中课程标准实验教科书必修 2. 北京: 人民教育出版社,2010,69 ~ 71
- 3 人民教育出版社,课程教材研究所,物理课程教材研究 开发中心.普通高中课程标准实验教科书选修 3-1.北京:人民教育出版社,2010.71