初中物理综合实践活动课中融入 TRIZ 理论的研究*

牛慧君

(江苏师范大学物理与电子工程学院 江苏 徐州 221100)

刘昱邑

(江苏省锡东高级中学 江苏 无锡 214100)

韩彩芹

(江苏师范大学物理与电子工程学院 江苏 徐州 221100)

(收稿日期:2021-01-06)

摘 要:TRIZ 理论是一种由多个创新方法组成的发明问题解决理论,具有较强的系统性、有序性和实用性.从TRIZ 理论中选取适当的创新方法和技术手段作为学生活动时使用的工具,设计了以"室内人工虹"为主题的实践活动课,为课堂与TRIZ 理论的融合提供案例.通过调查问卷了解学生的创造力倾向变化,证明在物理综合实践活动课中利用以TRIZ 理论为核心的创造工具有助于学生创新能力的发展.

关键词:TRIZ 理论 综合实践活动课 创新能力 初中物理

1 引言

综合实践活动课是一种将理论知识与实际生活紧密联系的课程形态,具有内容广泛、形式多元和实操性强等特点,与学科课程平行存在、相互补充. 2017 年教育部发布的《中小学综合实践活动课程指导纲要》提出,综合实践活动要体现知行合一和实践育人的特点,让学生逐步将理论知识与社会自然相联系[11]. 大部分初中物理知识与生活现象密切相关,为综合实践课的设计提供了背景知识. 教师可以依据书本中的内容设计实验活动,通过解决社会生活问题或制作具有创意的复杂产品,培养学生的知识运用能力和创新能力.

相比于普通课堂教学,综合实践活动课具有更加灵活和开放的特点,教师可以在活动过程中提供给学生一些程序化的、易于操作的方法和工具以提高学习效率和效果^[2]. TRIZ 理论,即发明问题解决理论(Theory of the Solution of Inventive Problems),是一种蕴含着多种创新性原理和方法的问题解决理论体系,由前苏联科学家根里奇·阿

奇舒勒(Genrikh. S. Altshuller)在 1946 年提出[3],揭示了人们在发明创造和解决问题时所遵循的科学规律,被广泛应用于农业、制造业和工业设计等领域^[4].将 TRIZ 理论融入综合实践活动课中,可以为学生提供多种用于问题解决和发明创造的方法和算法,帮助他们解决活动中遇到的冲突、矛盾和技术性难题.

2 以 TRIZ 理论为核心的创造工具的选择与融入

初中生所参与的综合实践活动课多以设计类和制作类活动为主,需要学生依据一定的物理知识,结合题目要求或实际需求,完成一些小发明和小制作.在这个过程中,TRIZ理论主要作为一种问题解决工具,为学生提供固定的问题解决流程、明确的问题解决方向和易于操作的系统化方法,指导学生从多种角度提出设想并进行产品设计、制作,为创新能力的发展奠定基础.

初中生思维水平和知识储备都比较有限,要想高效利用 TRIZ 理论,教师要做好这几方面的工作.

^{*} 江苏师范大学研究生培养质量工程教育教学改革与研究课题,项目编号: YPZG201821; 江苏师范大学研究生科研与实践创新计划研究结果,项目编号: 2020XTK806

作者简介:牛慧君(1994-),女,在读硕士研究生,主要研究方向为物理学科教学.

通讯作者:韩彩芹(1972 -),女,博士,教授,硕士生导师,主要从事微纳光学和创新性物理教育教学研究.

首先,教师要从学习目标和已有知识人手,从 TRIZ 理论中选取符合学生心理特点、有利于思维拓展并符合实际环境的创新性方法;然后将其组成一种易于接受和使用的工具;最后提供给学生并指导他们使用.

以根里奇·阿奇舒勒构建的 TRIZ 理论体系^[5] 为例,从六大核心内容中选取工程学原理、发明创造原理和技术矛盾解决原理三部分内容,再从中选择学生可以理解的工程参数和发明创造原理,组成活动中使用的创造工具,具体如图 1 所示.

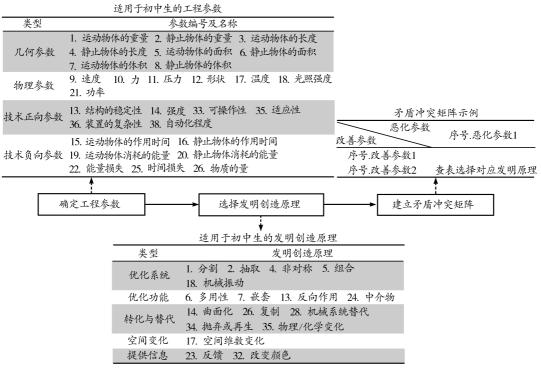


图 1 以 TRIZ 理论为核心的创造工具

第一步,根据活动目标在"工程参数"中选择制作产品涉及到的参数,如果该参数与目标一致,则在矛盾冲突矩阵中表示为改善参数,如果该参数与目标相反则在矛盾冲突矩阵中表示为恶化参数.在这一步,学生要选择合适的工程参数,确定它们与目标之间的关系并列出改善与恶化参数.

第二步,构建出成对的矛盾参数,比如改善参数 1的增加(减少)会导致恶化参数 2 的增加(减少), 则改善参数 1 与恶化参数 2 是一对矛盾参数.

第三步,从"创造原理表"中找到可以使用的对应原理,标注在相应位置并形成矛盾冲突矩阵,根据这些原理设想解决方案.并不是所有原理都可以有效或高效地解决问题,需要学生在具体问题中尝试,然后筛选出最佳的方法.

融人 TRIZ 理论的物理综合实践活动课可以分为课题导人、任务布置、问题解决与方案设计、评价与交流 4个步骤. 课题导入的重点是对实践活动背景进行全面介绍;任务布置主要是明确活动目标、确

定影响产品性能的因素并设想可能存在的问题;问题解决与方案设计主要是利用以 TRIZ 理论为核心的创造工具来解决问题,包括确定改善和恶化参数、建立矛盾冲突矩阵、根据对应创新原理提出实验方案、方案实施、提出最佳解决方案等 5 部分;评价与交流主要是对实践活动的总结、分享和对解决方案的进一步评估.

3 "室内人工虹"综合实践活动课案例

"室内人工虹"主题来源于苏科版《物理》八年级上册第三章第1节"光的色彩、颜色"中的3W习题,是对题目中提到的古代人工虹实验的扩展.将原本的室外观察实验变为装置设计活动课,让学生在设计过程中深入理解光的反射、折射规律和色散现象.

3.1 课题导入

在大自然中,彩虹总在雨后出现,这是因为太阳 光是一种复色光,由不同频率的色光组成,当太阳光 照射到空气中接近球形的水滴时会发生折射和反 射,被分解成多条单色光(色散现象)呈现在天空上, 肉眼可见的是由红光到紫光组成的光谱,人们称其 为彩虹. 但我们平时见到的彩虹都是在室外,有没有 想过,我们可以把彩虹带入室内?

3.2 任务布置

对全班学生进行分组,选出组长负责组织小组活动.

- (1) 问题识别
- a. 彩虹形成的原理是什么?
- b. 有什么方法能将彩虹引入室内?
- (2) 提供方法

水杯法、镜子法、光盘法、手电法和雾气法.

(3) 思考问题

彩虹是由于阳光射到空气中接近球形的水滴上,发生光的反射和折射形成的.

- a. 在室内我们可以用什么代替水滴和阳光?
- b. 如何保证彩虹的清楚和完整?

3.3 问题解决与方案设计

- (1)确定工程参数
- a. 改善参数:静止物体的面积、结构的稳定性、 光照度;
 - b. 恶化参数:能量损失、物质或事物的数量.
 - (2)建立矛盾冲突矩阵

根据工程参数表,选择发明创造原理,列出矛盾冲突矩阵,如表1所示.

表 1 "室内人工虹"装置工程参数的矛盾冲突矩阵

恶化参数 改善参数	22 能量损失	26 物质或事物的数量		
6 静止物体的面积	7	2		
13 结构的稳定性	2	32		
18 光照度	1,6,13	1		

其中原理1为分割,指的是将整体分为部分或部分组成整体;原理2为抽取,指的是抽出物体中必要的部分或属性;原理6为多用性,指的是一个物体赋予多个职能;原理7为嵌套,指的是把一个物体嵌入另一个物体;原理13为反向作用原理,指的是将物体或程序颠倒;原理32为改变颜色,指的是改变环境的颜色.

- (3)设计与实验
- a. 结合实际问题,将发明创造原理转化为具体设计思路;

- b. 设计实验方案和实验步骤;
- c. 进行实验,记录测试情况;
- d. 根据实验结果选择制作"室内人工虹"的最 佳方案:
- e. 在实验过程中,如果原理不合适,则重新定义 参数,继续使用矛盾冲突矩阵找出原理,进行实验和 测试.
 - (4)制作成品
 - a. 运用最佳方案制作产品;
 - b. 进行测试与调试;
 - c. 得到最终产品.

3.4 评价与交流

在本课题结束以后,以小组为单位推选出代表 发言.发言者以汇报的形式讲述本课题的设计理念, 阐述使用体验,分享制作过程中遇到的问题以及 想法.

学生在实践活动中,运用创造工具进行多次实验,以教师给出的5种方法为基础,集思广益提出了很多有创意的设计,比如有学生提出将水杯法和镜子法相结合,选择光线较好的地方,在浅水槽中装二分之一的水,将镜子固定在自制的、角度可调整的支架上并放入水槽中,通过调整支架成一定角度,在地板或者光屏上得到清晰的彩虹.另外,他们提出制作一个承重力更强、角度更好调节的支架来放置水槽的想法,通过同时调整水槽和镜子的角度来提高实验成功率.

4 教学效果分析

选择 J 省 W 市某初中九年级的两个班,共 94 人,将以 TRIZ 理论为核心的创造工具运用在综合实践活动课中,实行一个月,每周一次,共进行 4 次以物理知识为背景的课程.结束后,以调查问卷的形式对学生创造力倾向进行调查.在活动前后共发放创造性倾向水平问卷 188 份,回收 188 份,其中有效问卷 188 份,活动前、后分别发放 94 份问卷.

本次调查采用威廉斯创造性倾向量表^[6],选取该量表中的一部分题目以检测初中学生的创造性倾向水平,主要分为冒险性、好奇性、想象力和挑战性4个维度.冒险性代表敢于质疑并提出观点的行为;好奇心代表有深入思考和追根究底的精神;想象力代表对未发生事件的推测;挑战性代表提出多种设

想并进行验证的行为. 共有正向和反向题目两种题型,每道题有3个选项,分别为"完全符合""符合"和"完全不符合",正向题得分依次为3分、2分、1分,反向题与之相反. 测试结果得到对应4个维度的分

数以及总分,每项分数越高,表明创造力水平越高,反之越低^[7].利用 SPSS 25.0 软件进行分析比较,结果如表 2 所示.

对比项	想象力		冒险性		挑战性		好奇心	
- 四比坝	活动前	活动后	活动前	活动后	活动前	活动后	活动前	活动后
样本数	94	94	94	94	94	94	94	94
平均值	8.12	8.70	8.53	8.64	8.19	8.27	7.78	8.02
标准差	2.02	2.13	1.39	1.62	1.51	1.80	1.50	1.84
最小值	4.00	5.00	5.00	5.00	5.00	6.00	4.00	4.00
最大值	12.00	12.00	12.00	12.00	12.00	12.00	10.00	12.00
显著性 p		0.044		0.039		0.283		0.049

表 2 学生创造力倾向活动前、后对比表

根据表 2 可以看出,活动前、后学生的创新能力有所提升. 在想象力方面,平均值有较明显变化,根据标准差可以看出整体趋势向右迁移,满分人数增多、低分人数减少,显著性 p=0.044(<0.05)说明试验前、后分值变化较为明显,学生的想象力得到了发展. 在冒险性方面,平均数变化不明显,但标准差变大,显著性 p=0.039(<0.05)说明学生的冒险意识有所提升. 在挑战性方面,平均值、方差和最大值都有明显变化,高分人数增多,显著性 p=0.283(<0.05)说明更多学生敢于接受挑战. 但在好奇心方面,显著性 p=0.049(<0.05)分值变化不明显,说明学生好奇心改变较小,从心理学角度分析,好奇心是与生俱来的本能,短时间内很难改变.

调查结果表明,在综合实践课中融入 TRIZ 理论有助于学生创新能力的培养. 教师可以利用创造工具把创新思路和方法教给学生,激发他们的学习欲望和活动动机,克服对物理学习的恐惧和倦怠. 学生可以利用创造工具进行高效、条理的实验活动,在解决实际问题的过程中产生质疑、进行验证,在反复迭代中思考出独特的方案,使创新思维得到扩展,创新能力得到提升.

5 总结与展望

TRIZ 理论还蕴含着其他工具,比如演化类型、创新原理、解决算法和知识库等,教师可以选择不同的工具进行组合,提出多种以 TRIZ 理论为核心的创造工具并指导中学生使用,在实践中加以完善,探

索培养学生创新能力的教学方法.

然而,TRIZ 理论与综合实践活动的融合也存在一定的难度,需要教师在实践中不断改进:

- (1)由于创新过程涉及的知识往往比较广泛,教师要加强自己的学科知识与 TRIZ 理论知识的储备.
- (2)为学生提出多角度、逻辑性强的问题,促使 学生主动使用 TRIZ 理论.
- (3)积极挖掘可融合 TRIZ 理论的知识点,使用合适的教学策略帮助学生将 TRIZ 理论与物理知识紧密联系,达到学以致用的目的.
- (4)在学生刚接触 TRIZ 理论时,教师可以按照 创新的难易程度将 TRIZ 理论划分层次,在平时的 物理课堂中循序渐进地教给学生相关知识,在传统 实验课中适当融入,为学生的独立运用奠定基础.

参考文献

- 1 王佳. 综合实践活动课大主题课型教学初探[J]. 中国教育学刊, 2018(S2): 159~160
- 2 程伟,于冬冬.中小学综合实践活动有效实施的三个维度[J]. 教学与管理,2020(12):82~85
- 3 Altshuller G. 40 principles: TRIZ keys to innovation [M]. Technical Innovation Center, Inc., 2002
- 4 根里奇·阿奇舒勒. 实现技术创新的 TRIZ 诀窍[M]. 哈尔滨: 黑龙江科技出版社, 2008
- 5 张志远,何川,张珣. TRIZ 理论研究综述[J]. 重庆工商 大学学报(自然科学版),2004(1):100~104
- 6 威廉斯. 威廉斯创造力倾向测量表[J]. 中国新时代, 2003(22): 89~90
- 7 朱玉洪. 初中物理"思维型"课堂教学及其对学生创新素质的影响分析[J]. 科学大众(科学教育), 2018(1): 6