

用分光计测三棱镜折射率光路图的 MATLAB 动画演示*

刘天贵

(湖南大学物理与微电子科学学院 湖南 长沙 410082)

周群益

(广州理工学院通识教育学院 广东 广州 510540)

莫云飞

(长沙学院电子信息与电气工程学院 湖南 长沙 410022)

王培颖

(广州理工学院通识教育学院 广东 广州 510540)

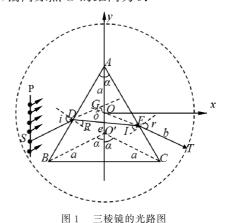
陈传盛

(长沙理工大学材料科学与工程学院 湖南 长沙 410114)

(收稿日期:2023-06-08)

摘 要:建立了三棱镜光路图的数学模型,应用 MATLAB 绘制光路图,检验了模型的正确性. 随着三棱镜的旋转,直观地演示了分光计中光路图和偏向角的变化过程,指出了最小偏向角.

关键词:三棱镜;折射率;光路图;轴线点光源;MATLAB程序


1 引言

用分光计测三棱镜折射率是大学物理实验中经典的光学实验之一,有一些教材和文献研究了该实验三棱镜中光线出射角、偏向角与人射角和折射率之间的关系[1-10]. 但是这些文献没有精确地绘制三棱镜的光路图. 有文献用 Mathematica 绘制了动态光路图,但是并不通用[11]. 本文根据分光计结构和工作原理,建立了数学模型,设计了 MATLAB 程序(附录中的程序可供老师在教学过程中演示),演示了光路图的动画。

2 三棱镜静止时的入射角 折射角和偏向角

分光计的俯视角如图 1 所示,一个点代表一条垂直纸面的线,一条线代表一个垂直纸面的面.望远

镜 T 位于半径为b 的圆弧上,其圆心在中心轴线上. 折射率为n 的三棱镜置于分光计中,设三棱镜 ABC 是等腰三角形,顶角为 α ,其外接圆的半径为a. 以中心轴线为原点建立坐标系xOy,三棱镜中心O' 位于y 轴上,偏离原点O 的距离为e.

四 1 二 0 0 0 0 1 7 0 0 1 1

^{*} 广东省高校科研特色创新项目,项目编号:2020KTSCX209;广州理工学院校级教改项目,项目编号:2022JY019;湖南大学教改基金课题;湖南省普通高等学校教学改革研究项目,项目编号:HNIG-20230184,HNIG-20230335.

作者简介:刘天贵(1973-),女,博士,讲师,主要从事大学物理实验教学与研究工作.

通迅作者:周群益(1955 -),男,副教授,主要研究方向为凝聚态物理、分子模拟.

设平行光源 P 的横坐标为 x_s ,与水平方向的夹角为 φ_s , φ_s 称为方位角,在同一实验过程中是不变的. 平行光经过两次折射,出射光仍然是平行光,经过望远镜的凸透镜,汇聚为一个点,代表一条垂直纸面的线. 平行光源 P 中的一个点光源 S 发出的光线 SD 在三棱镜中折射成 DE,出射线 ET 恰好沿着望远镜的轴线到汇聚点 T. 这种点光源 S 可称为轴线点光源,光线 SDET 就是轴向光线. 汇聚点 T 代表望远镜.

如果计算了轴线点光源S的纵坐标和入射点D以及出射点E的坐标,还计算了望远镜汇聚点T的坐标,就能绘制光路图.

平行光源的一条光线 SD 在左边的入射点为 D,与水平方向的夹角为 φ_s . 光线 SD 的入射角为

$$i = \varphi_{\rm S} + \frac{\alpha}{2} \tag{1}$$

临界入射角为[10]

$$i_{\rm c} = \arcsin(\sqrt{n^2 - 1}\sin\alpha - \cos\alpha)$$
 (2)

只有当 $i > i_c$ 时,光线在镜内才不会发生全反射,穿过三棱镜形成出射光,通过望远镜观察到. 根据折射定律,镜内折射角为

$$R = \arcsin \frac{\sin i}{n} \tag{3}$$

折射光 DE 的入射角为

$$I = \alpha - R \tag{4}$$

根据折射定律,光在点 E 的出射角为

$$r = \arcsin(n\sin I) \tag{5}$$

出射线 ET 与水平方向的夹角为

$$\varphi_T = -\left(r - \frac{\alpha}{2}\right) = \frac{\alpha}{2} - r \tag{6}$$

这是望远镜的方位角. 当 ET 的反方向的延长线 EG 经过原点O时,这条光线就能在望远镜中观察到. 偏向角为

$$\delta = \varphi_S - \varphi_T \tag{7}$$

点 G 是偏向角的顶点,是虚光源.

3 三棱镜的顶点坐标

三棱镜顶点 A 的坐标为

$$x_A = 0 \qquad y_A = a - e \tag{8}$$

顶点 B 的坐标为

$$x_B = -a\sin\alpha$$
 $y_B = -a\cos\alpha - e$ (9)

顶点 C 的坐标为

$$x_C = a \sin \alpha$$
 $y_C = -a \cos \alpha - e$ (10)

4 三棱镜静止时光线与三棱镜的交点坐标

4.1 望远镜汇聚点的坐标

由于望远镜的轴线始终对着中心轴线,所以光 线汇聚点 T 的坐标为

$$x_T = b\cos\varphi_T$$
 $y_T = b\sin\varphi_T$ (11)

4.2 右边出射点的坐标

出射线 ET 的斜率为

$$k_{ET} = \tan \varphi_T \tag{12}$$

ET 的直线方程为

$$y = k_{ET}x \tag{13}$$

三棱镜 AC 边的斜率为

$$k_{AC} = \frac{y_C - y_A}{x_C - x_A} \tag{14}$$

AC 边的直线方程为

$$y = y_A + k_{AC}(x - x_A)$$
 (15)

出射点 E 是出射线与三棱镜 AC 边的交点,设坐标为(x_E,y_E),联立式(13)和式(15),可得

$$y_E = k_{ET} x_E = y_A + k_{AC} (x_E - x_A)$$
 (16)
解得交点横坐标为

$$x_{E} = \frac{y_{A} - k_{AC} x_{A}}{k_{ET} - k_{AC}} \tag{17}$$

交点纵坐标 y_E 由式(16) 计算.

4.3 左边入射点的坐标

折射线 DE 与水平方向的夹角为

$$\varphi_{DE} = R - \frac{\alpha}{2} \tag{18}$$

其斜率为

$$k_{DE} = \tan \varphi_{DE} \tag{19}$$

DE 的直线方程为

$$y = y_E + k_{DE}(x - x_E)$$
 (20)

三棱镜 AB 边的斜率为

$$k_{AB} = \frac{y_B - y_A}{x_B - x_A} \tag{21}$$

其方程为

$$y = y_A + k_{AB}(x - x_A) (22)$$

左边入射点 D 是两条直线的交点,设点 D 的坐标为 (x_D, y_D) ,联立式(20) 和式(22),可得

$$y_D = y_E + k_{DE}(x_D - x_E) =$$

$$y_A + k_{AB}(x_D - x_A)$$
 (23)

解得交点横坐标为

$$x_D = \frac{y_A - y_E + k_{DE}x_E - k_{AB}x_A}{k_{DF} - k_{AB}}$$
 (24)

交点纵坐标 y_D 由式(23) 计算.

4.4 轴线点光源的坐标

轴线点光源的横坐标为 xs,纵坐标为

$$y_S = y_D + (x_S - x_D) \tan \varphi_S \tag{25}$$

4.5 偏向角的顶点坐标

设入射线 SD 的延长线与出射线 ET 的反方向延长线相交于点 G, 两线之间的夹角是偏向角 δ . 入射线 SD 的斜率为

$$k_{SD} = \tan \varphi_S \tag{26}$$

SD 的直线方程为

$$y = y_D + k_{SD}(x - x_D)$$
 (27)

出射线 ET 的方程为式(13), 联立式(13) 和式(27) 可得方程

$$y_G = k_{ET} x_G = y_D + k_{SD} (x_G - x_D)$$
 (28)

解得

$$x_G = \frac{y_D - k_{SD} x_D}{k_{ET} - k_{SD}} \tag{29}$$

点 G 的纵坐标 y_G 由式(28) 计算.

5 三棱镜旋转时的入射角、出射角和偏向角

当三棱镜顺时针旋转角度 θ 时,入射线SD的方向不变,因而斜率公式(26)不变.过点D的法线会随着旋转 θ 角,所以入射角变为

$$i = \varphi_{\rm S} + \frac{\alpha}{2} + \theta \tag{30}$$

左边折射角 R 由式(3) 计算. 折射光 DE 的入射角 I 由式(4) 计算, DE 的方位角为

$$\varphi_{DE} = R - \frac{\alpha}{2} - \theta \tag{31}$$

折射线斜率 k_{DE} 公式(19) 不变. 出射线ET 在点E 的出射角r 由式(5) 计算,ET 的方位角为

$$\varphi_T = -\left(r - \frac{\alpha}{2} + \theta\right) = \frac{\alpha}{2} - r - \theta$$
 (32)

出射线斜率 k_{ET} 的公式(12) 不变.

偏向角 δ 由式(7) 计算,由于 φ_s 不变,所以 δ 随 φ_T 线性变化.最小偏向角为

$$\delta_{\rm m} = 2\arcsin\left(n\sin\frac{\alpha}{2}\right) - \alpha$$
 (33)

此时的入射角为

$$i_{\rm m} = \arcsin\left(n\sin\frac{\alpha}{2}\right) \tag{34}$$

由式(30) 可得三棱镜的旋转角

$$\theta_{\rm m} = i_{\rm m} - \varphi_{\rm S} - \frac{\alpha}{2} = \frac{1}{2} \delta_{\rm m} - \varphi_{\rm S} \tag{35}$$

6 三棱镜旋转后的顶点坐标

设三棱镜旋转前的 3 个顶点坐标为 (x_m, y_m) ,其中 m=0,1,2,数值代表逆时针方向排列的 3 个点 A、B 和 C,3 点相对中心 O' 的角度为 $\alpha_m=2m\alpha$,坐标为

$$x_m = -a\sin\alpha_m$$

$$y_m = a\cos\alpha_m - e$$
(36)

其中m = 0, 1, 2,坐标 (x_0, y_0) 、 (x_1, y_1) 和 (x_2, y_2) 分别是三棱镜静止时的坐标 (x_A, y_A) 、 (x_B, y_B) 和 (x_C, y_C) .

当三棱镜顺时针绕原点旋转角度 θ 时,顶点 A 的坐标变为

$$x_A = x_0 \cos \theta + y_0 \sin \theta \tag{37}$$

$$y_A = y_0 \cos \theta - x_0 \sin \theta \tag{38}$$

顶点 B 的坐标变为

$$x_B = x_1 \cos \theta + y_1 \sin \theta \tag{39}$$

$$y_B = y_1 \cos \theta - x_1 \sin \theta \tag{40}$$

顶点 C 的坐标变为

$$x_C = x_2 \cos \theta + y_2 \sin \theta \tag{41}$$

$$y_C = y_2 \cos \theta - x_2 \sin \theta \tag{42}$$

计算三棱镜两边斜率的公式(14) 和式(21) 不变. 当三棱镜旋转后,各点T、E、D、S和G 坐标的计算公式不变.

7 分光计实验的动画

取 a 为长度单位,可将坐标和长度无量纲化. 利用 MATLAB 的计算功能和绘图指令以及动画功能,可设计程序(见附录),演示分光计实验的动画[12].

(1) 分光计实验有 6 个独立的参数: 三棱镜的折射率n、顶角 α 、光源方位角 φ_s 、光源横坐标 x_s 、望远镜汇聚点的半径b、三棱镜偏心距e. 取n=1.565, $\alpha=60^\circ$,由式(2) 可得临界入射角为 $i_c=32.86^\circ$. 取 $\varphi_s=5^\circ$,由式(1) 可得初始入射角为 $i=35^\circ > i_c$,光线不会在镜内产生全反射. 取 $x_s=-1.5a$, b=2a, e=0.5a,使得折射点位于三棱镜左右两条边上. 执行程序,分光计的初始轴向光线如图 2 所示,望远

镜的初始方位角为 -46.97° ,初始偏向角为 51.97° .

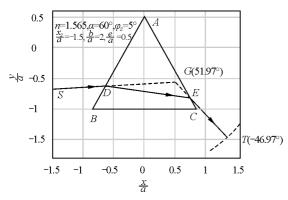


图 2 分光计的初始光路图

(2) 当三棱镜顺时针旋转时,轴向光线也随着移动,轴线点光源 S 向上移动,交点 D 沿 AB 边移动,交点 E 沿 AC 边移动,汇聚点 T 逆时针方向移动,偏向角不断减小.如图 3 所示,当旋转角 $\theta=16.48^{\circ}$ 时,望远镜汇聚点 T 的方位角为 -37.98° ,最小偏向角 $\delta_{\rm m}=42.98^{\circ}$. 这时的旋转角为 $\theta_{\rm m}$,而 $\theta_{\rm m}$, $\delta_{\rm m}$ 和 $\varphi_{\rm S}$ 满足式(35). 当偏向角最小时,虚光源 G 位于原点,镜内折射线与三棱镜的底边平行,光路关于三棱镜是对称分布的.

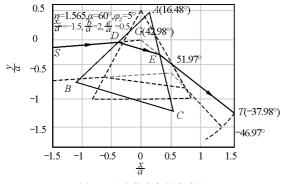


图 3 最小偏向角的光路图

(3) 当三棱镜继续旋转时,轴向光线继续随着移动,轴线点光源 S,交点 D 和 E 同时移动,汇聚点 T 顺时针移动,偏向角不断增加.如图 4 所示,当 $\theta \rightarrow 55^{\circ}$ 时,入射线 SD 与 AB 边趋于重合,形成 SD 掠过 AB 边的情况,望远镜的方位角趋于 -57.86° ,虚光源 G 也趋于 AB 线,偏向角趋于最大,达到 62.86° ,这是极限偏向角.显然,不论三棱镜怎么旋转,平行光源的方位角都是不变的,发生变化的是轴线点光源 S 的纵坐标.三棱镜的旋转角 θ 在 0° 到 55° 之间变化时,望远镜的方位角 φ_T 只在 -57.86° 到 -37.98° 之间变化,偏向角 δ 在 42.98° 到 62.86° 之间

变化,

可见:用动画演示实验过程十分直观.

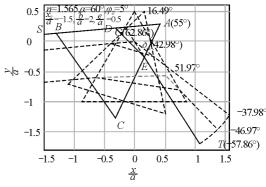


图 4 极限偏向角的光路图

对于各种不同的情况,适当选择 6 个参数,都可以调用相同的函数文件演示动画. 如果分别取 n=1.618、 $\alpha=50^{\circ}$ 、 $\varphi_{S}=5^{\circ}$ 、 $x_{S}=-1.5a$ 、b=2a、 e=0.2a,由式(2) 可得临界入射角为 $i_{c}=19.37^{\circ}$,由于 $\varphi_{S}+\frac{\alpha}{2}>i_{c}$,执行程序也可以演示动画(图略).

8 各点的轨迹和变化规律

(1)通过动画可见:当三棱镜旋转时,各点都在移动.如图5所示,三棱镜顶点A、B和C的轨迹都是圆弧,轴线点光源S的轨迹是竖直线,点D、E、G的轨迹是复杂的曲线,望远镜T的轨迹也是圆弧.通过动画发现:轴线点光源是运动的.不论轴线点光源在什么位置,其他平行光线都将通过望远镜的凸透镜汇聚,因此很难想到轴线点光源的运动.

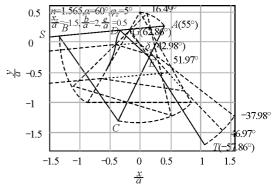


图 5 各点的轨迹

(2) 点 S、D、E 和T 随旋转角 θ 变化的规律如图 6 所示. 坐标 x_s 是常数,坐标 y_s 、 x_D 、 y_D 和 x_E 都随旋转角 θ 的变化而单调变化,并且在开始时变化比较大,因此光路开始时变化得比较快. 坐标 x_T 和 y_T 都是先升后降的曲线,因而有极大值,它们对应的偏向角最小.

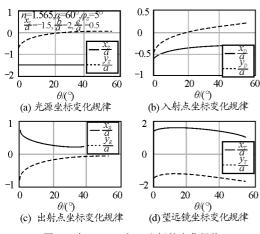


图 6 点 S,D,E 和 T 坐标的变化规律

(3) 虚光源 G 随旋转角 θ 变化的规律如图 7(a) 所示,其横坐标 x_G 的曲线是单调下降的,纵坐标 y_G 的曲线是单调上升的. 如图 7(b) 所示,偏向角 δ 的曲线是先降后升的,说明望远镜 T 先做逆时针移动,再做顺时针移动,当 $\theta=16.48^\circ$ 时,偏向角最小,最小值为 $\delta_m=42.98^\circ$. 测得最小偏向角,根据公式

$$n = \frac{\sin\frac{\alpha + \delta_{\rm m}}{2}}{\sin\frac{\alpha}{2}} \tag{43}$$

就能计算三棱镜的折射率.

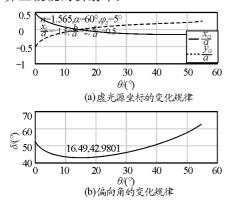


图 7 虚光源和偏向角的变化规律

9 结束语

光的传播路径是直线,根据入射光的方位角,三 棱镜的顶角和旋转角,建立入射角、折射角和出射角 的关系式,从而建立望远镜的方位角关系式,进而建 立入射线、折射线和出射线的方程;根据三棱镜的旋 转角可建立3个顶点A、B和C的坐标公式,建立左 右两条边的方程.由于望远镜的轴线总是指向中心 轴线的,先建立望远镜T的坐标公式,再建立出射点 E的坐标公式,然后建立入射点D的坐标公式,最后 建立轴线点光源 S 的纵坐标公式. 利用 MATLAB 计算坐标,绘制初始光路图. 当三棱镜旋转时,各点坐标也随着变化,利用 MATLAB 计算点的坐标,演示光路图的动画. 从动画意外地发现了轴线点光源是运动的.

MATLAB是研究光学实验很好的工具,本文程序可以在教学中演示.由于图形中显示的数据比较多,所以程序有点长.如果在图形中增加法线,程序会更长.程序设计有一定的技巧,需要多年经验的积累.通过解读完整的编程,可迅速提高编程水平.本文的程序具有通用性,读者不妨利用6个参数试一试.如果入射角比较小,光在三棱镜的出射面可能产生全反射,读者可以推导全反射光与BC边的交点公式,再修改程序,增加演示全反射的光路图.

本文在撰写过程得到了湖南大学物理实验中心 翦知渐副教授的热情指导,特此表示感谢.

参考文献

- [1] 文双春. 大学物理实验[M]. 长沙: 湖南大学出版社, 2022:56-61.
- [2] 姚启钧. 光学教程[M]. 2 版. 北京: 高等教育出版社, 1981;219.
- [3] 杜义林. 实验物理学[M]. 合肥:中国科学技术大学出版 社,2006:122-128,
- [4] 顾菊观. 三棱镜偏向角与棱镜顶角的关系[J]. 物理与工程,2010,20(4):22-23.
- [5] 葛松华, 唐亚明, 朱国全, 等. 三棱镜偏向角与入射角关系的研究[J]. 物理通报, 2008(7): 12-13.
- [6] 李轩,张雪. 光束经过三棱镜的偏向角分析[J]. 大学物理,2018,37(4):64-67.
- [7] 李晓勤. 模拟实验研究最小偏向角的规律[J]. 大学物理 实验,2008,21(3):25-28.
- [8] 罗乐,何于江. 由拉格朗日中值定理推导三棱镜的最小偏向角[J]. 物理通报,1997(4):5-6.
- [9] 魏良淑,吴芳,王浩浩,等.最小偏向角法测折射率实验的问题探讨[J].大学物理实验,2020,33(6):31-34.
- [10] 刘天贵,周群益,莫云飞,等.三棱镜出射角和偏向角以及折射率的 MATLAB 可视化[J].大学物理实验,2022,35(6):96-100.
- [11] 马成长,徐国量,阎旭东.在 Mathematica 中实现最小偏向角的动态光路图[J]. 湖北工学院学报,2003,18(1): 4-6.
- [12] 周群益,侯兆阳,刘让苏. MATLAB 可视化大学物理学 [M]. 北京:清华大学出版社,2011:25 30.

```
附录:
```

ltg2_1 main. m

% 分光计实验的动画的主程序

clear% 清除变量

n = 1.565; alpha = 60; phiS = 5; % 折射率, 三棱镜的顶角, 入射光的方位角度数

xS = -1.5; b = 2; e = 0.5; % 光源的横坐标,望远镜的半径,偏心距(第1组参数)

ltg2 1fun(n,alpha,phiS,xS,b,e)%调用函数文件

n=1.618; alpha=50; phiS=0; % 折射率, 三棱镜的顶角, 入射光的方位角度数

xS = -1.5; b = 2; e = 0.2; % 光源的横坐标,望远镜的半径,偏心距(第2组参数)

ltg2 1fun(n,alpha,phiS,xS,b,e)% 调用函数文件

ltg2 1fun. m

% 分光计实验计算交点坐标演示动画的函数文件

function fun(n,alpha,phiS,xS,b,e)

a = alpha * pi/180; pS = phiS * pi/180; % 三棱镜的顶角的度数,入射光的方位角的弧度数

 $x0 = 0; y0 = 1 - e; x1 = -\sin(a); y1 = -\cos(a) - e; x2 = -x1; y2 = y1; % 三棱镜旋转前的顶点坐标$

th = linspace(0,pi/2-(pS+a/2),2000); theta = th * 180/pi; % 旋转角向量,化为度数

xA = x0 * cos(th) + y0 * sin(th); yA = y0 * cos(th) - x0 * sin(th); % 点 A 旋转后的坐标

 $xB = x1 * \cos(th) + y1 * \sin(th); yB = y1 * \cos(th) - x1 * \sin(th); % 点 B 旋转后的坐标$

 $xC = x2 * \cos(th) + y2 * \sin(th); yC = y2 * \cos(th) - x2 * \sin(th); % 点 C 旋转后的坐标$

i = pS + a/2 + th; R = asin(sin(i)/n); I = a - R; % 人射角, 镜内折射角镜内, 右边入射角

 $r = a\sin(n * \sin(I)); pT = a/2 - r - th; % 镜外出射角,望远镜方位角$

xT = b * cos(pT); yT = b * sin(pT); % 望远镜坐标

kET = tan(pT); kAC = (yC - yA)./(xC - xA); %ET和AC的斜率

xE = (yA - kAC. * xA)./(kET - kAC); yE = kET. * xE; % 点 E 的坐标

kDE = tan(R - a/2 - th); kAB = (yB - yA)./(xB - xA); %DE和AB的斜率

xD = (yA - yE + kDE. * xE - kAB. * xA). /(kDE - kAB); yD = yE + kDE. * (xD - xE); % 点 D 的坐标

yS = yD + (xS - xD) * tan(pS); % 光源纵坐标

kSD = tan(pS); % 入射光的斜率

xG = (yD-kSD. * xD)./(kET-kSD);yG = kET. * xG;% 虚光源坐标

figure% 开创图形窗口

plot([x0,x1,x2,x0],[y0,y1,y2,y0],'---','LineWidth',2)%画三棱镜

holdon,plot([xS,xS],[yS(1),yS(end)],' -. ',' LineWidth ',1)% 保持属性,画光源轨迹

plot(xT,yT,' -.',' LineWidth',1)% 画望远镜的轨迹

axisequal, grid on, fs = 16; % 坐标间隔相等, 加网格,字体大小

xlabel('\itx/a','FontSize',fs)%显示横坐标标签

ylabel('\ity/a','FontSize',fs)%显示纵坐标标签

s = ['\itn\rm = ',num2str(n),',\it\alpha\rm = ',num2str(alpha),'\circ',...

',\it\phi_S\rm = ',num2str(phiS),'\circ'];

 $s = char(s,[' \exists x_S/a rm = ', num2str(xS), ', \exists x_s rm = ', num2str(b), ...$

',\ite/a\rm = ',num2str(e)]);% 字符串

text(xS,1-e-0.1,s)%显示折射率和入射光的方位角等

d = pS - pT; [dm, jm] = min(d); % 偏向角,取偏角最小值下标

dm = 2 * asin(n * sin(a/2)) - a; thm = dm/2 - pS; % 最小偏向角,对应的旋转角

deltam = dm * 180/pi; thetam = thm * 180/pi; % 化为度数

```
for j = 1:length(th)% 按旋转角循环
   if i == 1% 如果是第 1 次循环
       h0 = plot([x0,x1,x2,x0],[y0,y1,y2,y0],' LineWidth',2);% 画三棱镜并取句柄
       h1 = plot([xS(1), xD(1), xE(1), xT(1)], [yS(1), yD(1), yE(1), yT(1)],...
           'LineWidth',1);% 画光路图并取句柄
       h2 = plot([xD(1),xG(1)],[yD(1),yG(1)],' --- ',' LineWidth ',1); % 画延长线并取句柄
       h3 = plot([xE(1),xG(1)],[yE(1),yG(1)],' --- ',' LineWidth ',1);% 画反方向延长线并取句柄
       hA = text(xA(1),yA(1),' \itA');%显示 A 并取句柄
       hB = text(xB(1),yB(1),' \itB');%显示 B 并取句柄
       hC = text(xC(1),yC(1),' \setminus itC');%显示 C 并取句柄
       hS = text(xS,yS(1),'\itS');%显示S并取句柄
       hD = text(xD(1),yD(1),'\itD');%显示 D 并取句柄
       hE = text(xE(1),yE(1), '\itE'); %显示 E 并取句柄
       hT = text(xT(1),yT(1),[' \setminus tT \setminus rm(',num2str(pT(1)*180/pi,4),...
           '\circ)']);%显示 T 和初始方位角并取句柄
       hG = text(xG(1), yG(1), \lceil ' \setminus itG \rceil , num2str(d(1) * 180/pi, 4), \dots
           '\circ)' ]);% 显示 G 和初始偏向角并取句柄
       title('分光计的初始光路图','FontSize',fs)%显示标题
       pause%暂停,按一键继续
       plot([xS(1),xD(1),xE(1),xT(1)],[yS(1),yD(1),yE(1),yT(1)],'--',...
           LineWidth 1,1)% 画光路图
       plot([xD(1),xG(1)],[yD(1),yG(1)],':',[xE(1),xG(1)],[yE(1),yG(1)],':',...
           LineWidth ',1)% 画延长线
       title('分光计光路图的动画','FontSize',fs)%显示标题
       text(xG(1),yG(1), \[num2str(d(1) * 180/pi,4), '\circ'\]); %显示初始偏向角
       text(xT(1),yT(1),[num2str(pT(1)*180/pi,4),'\circ']);%显示初始偏向角
   else% 否则
       set(h0, 'XData', [xA(j), xB(j), xC(j), xA(j)], ...
           'YData',[yA(j),yB(j),yC(j),yA(j)])% 设置旋转后的三角形坐标
       set(h1, 'XData', [xS, xD(j), xE(j), xT(j)], ...
           'YData',[yS(j),yD(j),yE(j),yT(j)])% 设置旋转后的光线
       set(h2, 'XData',[xD(j),xG(j)], 'YData',[yD(j),yG(j)])% 设置旋转后的延长线
       set(h3, 'XData',[xE(j),xG(j)], 'YData',[yE(j),yG(j)])% 设置旋转后的反方向延长线
       set(hA, 'Position', [xA(j),yA(j)], 'String',...
          ['\itA\rm(',num2str(theta(j),4),'\circ)'])% 设置 A 点和旋转角
       set(hB, 'Position', [xB(j),yB(j)])%设置B点
       set(hC,' Position',[xC(j),yC(j)])%设置C点
       set(hS,' Position',[xS,yS(j)])%设置S点
       set(hD, 'Position',[xD(j),yD(j)])%设置D点
       set(hE, 'Position',[xE(j),yE(j)])%设置E点
       set(hT, 'Position',[xT(j),yT(j)], 'String',...
          ['\itT\rm(',num2str(pT(j) * 180/pi,4),'\circ)'])% 设置 T 点和方位角
       set(hG, 'Position', [xG(j), yG(j)], 'String', ...
          ['\itG\rm(',num2str(d(j) * 180/pi,4),'\circ)'])% 设置 G 点和偏向角
   end% 结束条件
   pause(0.01)% 延时
```

```
if i == jm% 旋转角接近最小偏向角的旋转角时
       title('最小偏向角的光路图','FontSize',fs)%修改标题
       pause%暂停,按一键继续
       plot([xA(j),xB(j),xC(j),xA(j)],[yA(j),yB(j),yC(j),yA(j)],' ---',...
           'LineWidth',1.5)% 画三角形
       plot(\lceil xS, xD(j), xE(j), xT(j) \rceil, \lceil yS(j), yD(j), yE(j), yT(j) \rceil, ' ---', \dots
           LineWidth 1,1)% 画光路图
       plot([xD(j),xG(j)],[yD(j),yG(j)],':',...
          [xE(j),xG(j)],[yE(j),yG(j)],':',' LineWidth ',1)% 画延长线
       text(xA(j),yA(j),[num2str(thetam,4),'\circ'])%显示最小偏向角的旋转角
       text(xG(j),yG(j),\lceil ' \t delta \ m = ',...
          num2str(dm * 180/pi,4), '\circ'])%显示最小偏向角
       text(xT(j),yT(j),[num2str(pT(j)*180/pi,4),'\circ'])%显示对应的方位角
       title('分光计光路图的动画','FontSize',fs)%修改标题
   end% 结束条件
end% 结束循环
pause%暂停,按一键继续
plot(xA,yA,'-.',xB,yB,'-.',xC,yC,'-.',' LineWidth',1.5)% 画三点旋转的轨迹
plot(xD,yD,'-.',xE,yE,'-.',xG,yG,'-.',' LineWidth',1.5)% 画点 D,E,G 的轨迹
title('分光计极限光路图和各点的轨迹', FontSize',fs)% 修改标题
```

MATLAB Animation of Light-Path Map in Refraction Index Measurement of Three Prism with Spectrometer

LIU Tiangui

(College of physics and electronics, Hunan University, Changsha, Hunan 410082)

ZHOU Qun yi

(Guangzhou Institute of Science and Technology, Guangzhou, Guangdong 510540)

MO Yunfei

(School of Electronic and Communication Engineering, Changsha University, Changsha, Hunan 410022)

WANG Peiying

(Guangzhou Institute of Science and Technology, Guangzhou, Guangdong 510540)

CHEN Chuansheng

(School of Materials Science and Enginerring, Changsha University of Science and Technology, Changsha, Hunan 410114)

Abstract: After establishing mathematical model, the light-path map in refraction index measurement of three prism with spectrometer was drawed by MATLAB, and the correctness of mathematical model was verified. The change process of light-path map and deviation angle in spectrometer was demonstrated intuitively by rotating a triangular prism. Furthermore, a minimum deviation angle was pointed out during animation demonstration. In the course of teaching, the MATLAB program in the appendix can be displayed by the teacher.

Key words: triangular prism; refractive index; light-path map; axis point light source; MATLAB program